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Abstract—Several current and proposed experiments at the
Fermi National Accelerator Laboratory have novel data acquisi-
tion needs. These include (1) continuous digitization, using com-
mercial high-speed digitizers, of signals from the detectors, (2) the
transfer of all of the digitized waveform data to commercial off-
the-shelf (COTS) processors, (3) the filtering or compression of
the waveform data, or both, and (4) the writing of the resultant
data to disk for later, more complete, analysis.

To address these needs, members of the Accelerator and De-
tector Simulation and Support Department within the Scientific
Computing Division at Fermilab are using parallel processing
technologies in the development of a generic data acquisition
toolkit, artdaq. The artdaq toolkit uses MPI (Message Passing
Interface) and art, an established event-processing framework
shared by new experiments at Fermilab. In an artdaq program,
the digitized data are transferred into computing nodes using
commodity Peripheral Component Interconnect Express (PCIe)
cards, event fragments are transferred between distributed pro-
cesses using MPI, and assembled into complete events. These
events are then processed by a configurable selection of user-
specified algorithms, commonly including filtering and compres-
sion algorithms, using the art event-processing framework.

This paper describes the architecture and implementation of
the first phase of the artdaq toolkit and shows early performance
results with configurations that match upcoming experiments
both at Fermilab and elsewhere.

Index Terms—Data acquisition, concurrent programming, dis-
tributed programming.

I. INTRODUCTION

THE artdaq project has been established to design and de-
velop a generic toolkit for the construction of efficient and

robust event1 building, filtering and analysis programs within
data acquisition systems for future medium-scale experiments,
such as those planned at Fermilab for the next decade. These
experiments have fewer collaborators than recent and current
collider experiments, and so cannot easily afford to develop
and maintain as much customized infrastructure software as
could the larger experiments of the TeVatron era.

An important aim of the artdaq project is to allow the
sharing of data acquisition (DAQ) infrastructure between
experiments, helping them to work within the smaller budgets
available to them. We are able to help these experiments
to concentrate their efforts on the parts of the system that
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1An event, in our terminology, is a collection of data associated with one
time window, and is the smallest unit of data to be processed by the modular
algorithms of the event-processing framework.

are experiment-specific, and to relieve them of the burden of
supporting the parts of the code that can be dealt with in a
generic (i.e., non-experiment-specific) manner.

A second aim of artdaq is to allow use of commercial off-
the-shelf (COTS) computers, rather than (as is traditional in the
field) special-purpose hardware such as Field-Programmable
Gate Arrays (FPGAs), as close to the data source as possible.
This makes programming easier, because many more physicists
know how to program general-purpose computers than know
how to program special-purpose hardware. Since modern COTS
computers have multiple cores, artdaq is designed to take
advantage of the inherent parallelism of the event-building
process, to perform event-filtering of independent events in
parallel, and to make the development of modular event-
processing algorithms that internally use parallel programming
techniques convenient. Additionally, we aim to take advantage
of the high throughput of modern machines, using high-
performance networks, hardware buses, and interconnects.

In many of the experiments with which we have worked,
the development of online and offline event-processing code
has proceeded separately, by communities who interact and
exchange code with insufficient frequency. The result is that the
integration of the online and offline codes historically has been
a time-consuming challenge. To alleviate this problem artdaq
makes use of the art [1] event-processing framework, already
in offline use by many of the upcoming Fermilab experiments.
Experiments who use artdaq would thus gain the benefit of
a larger community of developers for the online system (the
offline system is typically understood by more collaborators).
Additionally, this means much of the code used in online filter
system can be verified in the offline environment.

II. PROBLEMS ADDRESSED

In this section, we describe three of the problems that artdaq
addresses. They are general in nature; although not all apply to
every experiment, most experiments encounter one or more of
them. In the subsequent section, we describe some concrete use
cases for specific experiments that have guided the development
of artdaq.

A. Event Building

The detectors built by most experiments are read out through
multiple, often heterogeneous, DAQ front-ends. Each front-
end is responsible for reading a fixed portion of the detector
hardware. One of the important tasks to be undertaken by the
DAQ system is the assembly of all the readouts corresponding
to a single event. We call this assembly process event building.



Event building often requires the coordinated work of several
computing nodes.

The throughput rates of the hardware and software that
make up the event-building system directly limit the amount
of data that an experiment can process in a given period of
time. Thus it is imperative to communicate data efficiently and
reliably from data collection nodes to wherever the filtering
algorithms (or other data processing algorithms, such as data
compression algorithms needed by some experiments to reduce
the bulk of the data to be stored) will be run. This includes
experiments that have no data filtering in front-end hardware
and event-processing times that vary widely from event to
event. Depending on the computing resources available to an
experiment, it may be beneficial to use the same computing
nodes for both event-building and filtering.

In a software system that contains both shared-memory
and distributed parallelism, the optimal distribution among
computing node of the processes of the system depends on
the amount and types of computing hardware available, the
amount of data movement necessary, and the exact nature of
the computing to be done. In order to make convenient the
testing needed to determine the optimal event-building system
configuration, experiments want to be able to reconfigure the
system (adding more processing capacity, or reacting to loss
of hardware) without reprogramming.

B. Filter Algorithm Execution

Many experiments want to perform as little event filtering
as possible in hardware, in order to obtain as much flexibility
as possible for modification of algorithms and thresholds
used in this filtering. Event filtering in software provides the
opportunity to obtain this flexibility. One of the goals for our
project is to find to what extent modern computing hardware
provides the computing capacity necessary to do the work.

In order to fine-tune the event selection, experiments want the
ability to modify selection thresholds and to replace algorithms,
without rebuilding programs. Additionally, many experiments
want the ability to run multiple filter algorithms in the same
program, on the same event stream.

Because of the degree of sophistication of filter algorithm
software, experiments want to enable all physicists interested in
working on development and testing of these algorithms to do
so. Thus experiments want to be able to run these in the offline
framework, as well as in the online system. This allows for
easier development, as well as study of the algorithms within
the simulation, without the concern inherent in the comparison
of two different implementations of (what is intended to be) the
same algorithm. Seamlessly supporting multiple environments
also permits extensive algorithm debugging and performance
studies using typically more readily-available offline computing
resources.

C. Single-Node Processing Capacity

Modern experiments need to make use of modern computing
hardware, which means taking advantage of multicore plat-
forms. In an era of tight budgets, it is critical to take full
advantage of the most affordable COTS computing resources

Experiment-specific 
DAQ applications

Event-building and 
routing components

art event-processing 
framework

Experiment-supplied 
data products

Experiment-supplied 
filtering and 

reconstruction modules

Data components

Generic data 
components

Experiment-supplied 
raw data formats

Fig. 1. Major elements of the artdaq architecture. The arrows indicate
dependencies, e.g. experiment-supplied raw data formats depend upon the
artdaq generic data components. The colored components are those delivered
as part of artdaq. The remaining components are supplied by the experiments
that use artdaq.

available. Increasingly, this means taking advantage of both
distributed and shared-memory parallel computing technologies.
However, it is not reasonable to expect that all contributors to
online software development will become experts in parallel
programming techniques. In artdaq, we are working to develop
tools that simplify the development of software that is able to
take advantage of the parallelism inherent in the event-building
and filtering tasks, and which utilizes multicore hardware and
high-throughput networks to their greatest advantage.

III. THE ARCHITECTURE OF ARTDAQ

artdaq is a set of C++ libraries and programs, i.e., a toolkit,
for use in the construction of event-building, filtering, and
processing programs as part of a DAQ system. artdaq contains
three major subsystems:

• software components for routing data between threads
within a process, and between different processes, possibly
on different machines, and for assembling complete events
from these data;

• software components that encapsulate the data being
routed, which experiments specialize to provide type-safe
access to the data being routed;

• the art event-processing framework, to allow loading and
execution of experiment-specific software modules for
processing the data being routed.

Since artdaq is a toolkit, it does not contain any complete
DAQ applications; such applications are to be built by each ex-
periment to that experiment’s specific requirements, constraints,
and preferences. The major components of artdaq are shown
in Fig. 1. All user-visible classes in artdaq are defined in
the artdaq namespace. For brevity, in this paper we provide
class names without the namespace specification.

A. Data Model Components

The primary data components are the classes Fragment and
RawEvent. An instance of class Fragment represents a well-
defined portion of the data from one event (likely that read by



one front-end unit) as defined by the experiment. The interface
of Fragment is sufficient to provide the information necessary
for routing, and the implementation organizes the data for
optimal throughput of the routing systems. Each Fragment
is identified by a two-part identifier: a SequenceID, that
denotes the event to which the Fragment belongs, and a
FragmentID, which identifies which detector component
(or components) are represented by the Fragment. Each
experiment must choose what information from its own data is
to be used to construct these two identifiers; for the experiments
with which we have worked thus far, the identification has
been trivial. Fragments also contain a type identifier, which
is used to identify what type of data are being carried by the
fragment. This allows experiments the flexibility of having
different types of data (e.g. detector data, trigger blocks, or
end-of-run markers), while ensuring that all can be handled
with the same efficiency by the data-routing and event-building
system.

The physical organization of the data in a Fragment
consists of a std::vector of 64-bit unsigned integers. This
does not demand the form of the experiment’s raw data matches;
we describe the restriction on the raw data in section III-E. We
make use of so-called move semantics introduced in C++ 2011
[2] to allow us to pass Fragment objects between software
components without making a copy of the contained data. This
allows us to keep the code simple to understand and to use
correctly, risking neither memory leaks nor lack of exception
safety. We deal with Fragment objects, not addresses in
memory, but the resulting code is as efficient as if we worked
with the pointers to the data directly. We describe this in more
detail in section III-B.

The logical organization of the data in a Fragment consists
of two parts: a header, which contains the routing information
described above, and a payload, which contains the experiment-
specific data carried by the Fragment. The first two elements
of the std::vector contained in the Fragment contain
the bit-packed header information; the interface of Fragment
provides access to the data in a convenient and type-safe manner.
The experiment-specific code that works with Fragments
does so by overlaying a defined structure onto the payload
part of the Fragment, as described in section III-E. This
system allows for payloads of arbitrarily large size; there are
no compile-time limits set on the sizes of the experiment data.
Fragment objects may be written to disk through the

art framework’s persistency mechanism. This means that any
experiment that uses Fragment in the definition of its raw
data classes automatically obtains a means to write those data
to the same type of file that is read by the experiment’s offline
system. In addition to providing the means of persistence for
detector data, this also means that simulations can create data
files in the same format as the experiment’s raw data; thus the
output of such a simulation can easily be fed through the data
processing algorithms that will be applied to the detector data,
to help verify correct behavior of those algorithms, and for
performance tuning.

The event-building process collects Fragments to build
RawEvents, again making use of move semantics to avoid
copying the underlying data. The RawEvent can contain an

arbitrary number of Fragments; again, there is no compile-
time limit set. Due to the flexibility of the Fragment, the
RawEvent can contain many different types of experiment-
specified detector data; the event-building code that deals with
RawEvents and Fragments does not need to be modified
if new experiment-specific data types are added to an existing
system.

B. Advantages of C++ 2011

An important goal of artdaq is to facilitate the writing
of robust and efficient code. One key to efficiency is the
minimization of copying of data. In C code, copying of
data is avoided by passing pointers to values, rather than
by passing the values themselves. However, C provides no
automatic memory management, so great care must be taken
to avoid the introduction of memory leaks. Robust code is
thus typically obscured by the quantity of error-handling and
memory-management code required; modification of such code
is error-prone. C++ provides a mechanism (referred to as
resource acquisition is initialization, or RAII [3]), which,
through the use of the strictly-defined lifetimes of stack
objects, removes the need for the programmer to explicit
manage memory. C++ container classes and class templates
(e.g. std::vector) encapsulate this use. But naive use of
these classes, while producing robust code, can introduce
unacceptable performance overheads from the copying of data.
The 2011 C++ standard introduced several language features,
most importantly rvalue references and move semantics, that
allow simple and maintainable code to rival the efficiency of
C. The following example code shows a simplified portion of
the artdaq code, in which ownership of the data managed by
a Fragment is given over to a RawEvent, rather than being
copied.

If written in C, this code might appear as the following. The
event data would be organized into a struct that organized
the fragment data; the data for each fragment is kept in an
array, with each array being of arbitrary size:

typedef struct {
unsigned long nfrag;
unsigned long *sizes;
unsigned long **data;

} raw_event;

The function build_event has the task of accepting the
fragments (and the additional data of their sizes, and the number
of fragments), building the raw_event, and releasing the
calling code from ownership of the data it has passed into
the function:

void build_event(unsigned long ***fragments,
unsigned long **sizes,
unsigned long nfrag,
raw_event *e ) {

e->nfrag = nfrag;
e->sizes = *sizes;
e->data = *fragments;
*sizes = 0;
*fragments = 0;

}



In this code, the build_event function passes ownership, and
thus responsibility for memory management, from the caller of
build_event to the user of the raw_event structure. This
code is efficient, but is not robust. Most importantly, there
is no check that the structure e, on input to the function,
does not already reference some memory; any such memory
referenced would be leaked when the data of the struct are
overwritten. Using the GNU C compiler (gcc version 4.7.1, with
-O3 optimization), this code produces the following assembly
code:

00: mov (%rsi),%rax
03: push %rbp
04: mov %rdx,0x10(%rcx)
08: mov %rsp,%rbp
0b: mov %rax,0x8(%rcx)
0f: mov (%rdi),%rax
12: movq $0x0,(%rsi)
19: mov %rax,(%rcx)
1c: movq $0x0,(%rdi)
23: leaveq
24: retq

We note this is only 11 instructions.
The approximate C++ equivalent of this code, similar to the

code in artdaq, is shown below. First, we introduce a few
typedefs to reduce the amount of typing required.

typedef std::vector<unsigned long> Fragment;
typedef std::vector<Fragment> FragVec;
typedef std::unique_ptr<FragVec> FragVecPtr;

Next, we define the RawEvent structure, which contains
(and thus controls the lifetime of) the Fragments.

struct RawEvent { FragVecPtr data; };

Finally, have the C++ version of build_event.

void build_event(FragVecPtr&& frags,
RawEvent& e) {

e.data = std::move(frags);
}

This code makes use of three features added to C++ in the
2011 standard: std::unique_ptr, std::move, and rvalue
references. The argument named frags is passed by rvalue
reference; this tells the compiler that this argument can
only be bound to an expression that is an rvalue reference,
and furthermore that the compiler is then free to “move”
the resources owned by that expression to being owned by
frags; the std::move then tells the compiler it is free to
pass ownership of the memory controlled by frags to the
RawEvent’s data member data. The data are not copied;
only ownership is passed. Unlike the C code above, this code
is robust; if the input RawEvent contained Fragments, they
would be deleted before the new pointer was assigned. The
assembly language produced from this code (by the GNU
C++ compiler of the same version, with the same optimization
setting) is shown below.

00: push %rbp
01: mov %rsp,%rbp
04: push %r13
06: push %r12
08: push %rbx
09: sub $0x8,%rsp

0d: mov (%rdi),%rax
10: movq $0x0,(%rdi)
17: mov (%rsi),%r13
1a: mov %rax,(%rsi)
1d: test %r13,%r13
20: je 70
# 25 instructions elided; they will be
# called only if the incoming event is
# non-empty.
70: add $0x8,%rsp
74: pop %rbx
75: pop %r12
77: pop %r13
79: pop %rbp
7a: retq

We have elided 25 instructions, which are called only if the
incoming RawEvent is non-empty—which is not the usual
case. The main path of the C++-generated assembly code is
7 instructions longer than the C code. This demonstrates that the
C++ language does not introduce any great deal of complexity
behind the scenes. However, the C++ code is arguably more
succinct, and unarguably more robust. Certainly, the C code
can be made robust—but at the cost of simplicity, clarity, and
maintainability.

C. Event-Building Components

artdaq makes use of the Message Passing Interface (MPI) [4]
to create a multi-process, potentially distributed, event-building
program. The use of MPI allows us to take advantage of high-
performance network drivers written for the supercomputing
community. We also obtain the flexibility of being able to
move different computational tasks to different nodes with just
a change in our configuration scripts, and with no need to
recompile the application. This gives a running experiment
great flexibility in responding to failure or reassignment of
computing hardware. It also makes measuring the performance
of different program configurations a relatively simple task;
one needs only to change a configuration file and re-run the
test program to observe the effectiveness of different process
layouts.

An artdaq event-building and filtering program contains
three processing layers.

• The fragment receiver layer receives data from the
experiment’s front-ends (using whatever communication
mechanism the experiment chooses), and is responsible
for sending the data to the correct event builder, through
MPI.

• The event-building layer receives data from the fragment
receivers, collating them into complete events. Complete
events are then sent to another thread in the same process
for event processing.

• The event-processing layer runs the art event-processing
framework, which performs whatever tasks the experi-
ments needs to perform on the data stream. Common
examples include event filtering, track finding, and data
compression. The data are optionally written to persistent
storage by art.

An artdaq event-building program is configured at run-time
to contain a number N of fragment receiver processes, and a



number M of event-builder processes; there is no requirement
that N =M . Each fragment receiver reads data from a specific
detector component (or set of components), and writes those
data to a Fragment; the FragmentID assigned to that
Fragment identifies the portion of the detector data which the
Fragment carries. The fragment receiver is also responsible
for looking into the detector data to find the (experiment-
specific) data that are used to identify the event to which
these data belong; this is used to create a SequenceID for
this event, and which is used in a round-robin to direct the
Fragment to the event builder responsible for handling that
event. We provide the class SHandles to encapsulate the
coordination of multiple MPI buffers used in sending, and to
automatically record some performance metrics.

Each event-building process receives all the Fragments
from the subset of events bound for it, possibly out-of-order,
and is responsible for building complete events from them. We
have provided a class RHandles to manage multiple MPI
buffers used for reading and to record additional performance
metrics. Using techniques like those described in section III-B,
we have taken care that once a Fragment has been read into
the MPI buffer, no additional copying of the underlying data
is ever done, regardless of the number of times control of the
Fragment is passed between different functions and even
between different threads of the process.

The most important class in the event-building processes is
EventStore, which is responsible for managing the thread
that runs the art event-processing framework (described in
section III-D), for accumulating complete events, and for
sending complete events to the thread that runs art. The
EventStore is configured at run-time to know the number
of Fragments comprising a complete event. Fragments
making up a particular event may come out of order, and
some Fragments for a later event may show up in the
event-building layer before all the Fragments of an earlier
event. The event-building layer aggregates the Fragments
it receives into RawEvents. When it determines that the
receipt of a Fragment has completed a specific event, the
EventStore layer removes that RawEvent from its internal
cache of incomplete events and sends it to another thread in the
same process, which is responsible for running the art event-
processing framework. Separate threads of execution are used
so that the thread that is building events can proceed at full
pace even if the occasional event takes a longer-than-average
time to process in the thread that is running art.

An orderly program shutdown is initiated when each
fragment-receiver process identifies an end-of-data condition.
Each of these processes then sends an end-of-data Fragment
to each event-building process. When an event-building process
has seen as many end-of-data fragments as it expects, it sends an
end-of-data “event” to the thread running art, and then awaits
the termination of that thread.. That thread terminates when
the art has completed processing any events it has buffered,
ending with the end-of-data “event”, which lets art know no
more events are coming.

The event-building system keeps monitoring statistics at a
number of critical points. These include statistics regarding the
number, size, and time taken for MPI data transfers, the number

of incomplete events currently in the EventStore, and the
number of completed events sent to art. We are currently
implementing a system that can report all these statistics
asynchronously to a DAQ system control program.

D. The art Framework

The art framework is used to execute experiment-supplied
algorithms for both online and offline tasks. Such tasks vary by
experiment, but typically include filtering, reconstruction, data
compression, and writing of data files. It provides configuration
ability through use of the Fermilab Hierarchical Configuration
Language (FHiCL) [5]. The framework can run an arbitrary
collection of algorithms, chosen at configuration time, not
at program compilation or linking time. Experiment-supplied
algorithms are implemented by writing art modules, which are
classes that implement one of a handful of interfaces specified
by art. Each module is built into a separate dynamically loaded
library. Based on the contents of the FHiCL configuration file,
art loads the libraries necessary to run the named modules.
Algorithms can obtain read-only access to experiment-defined
data products in the event, and add new data products of their
own construction. art also supplies the scheduling features that
allow different combinations of algorithms to be run on different
events, based on pass-or-fail decisions made by experiment-
supplied filter modules, all without rebuilding the application.

Provenance information is automatically stored for all data
products. FHiCL allows experiments to provide “standard”
configurations for all modules, and for a user to partly
or entirely override a standard configuration on a case-by-
case basis. The automatic provenance tracking records the
parameters that were actually used to configure each module
(regardless of whether they were the experiment defaults or
the user-level overrides), and associates those parameters with
the data product or products made by each module.

The framework has monitoring points around the invocation
of each module, so event-by-event timing results can be
obtained for every module. Additionally, simple memory
usage analysis can also be performed, helping to identify any
algorithms with uncontrolled or excessive memory usage.

art also provides a set of run-time-configurable policies
for reacting to exceptions thrown by modules, and exception
classes for experiments to use in their own code. The data in
the exception communicates the kind of error that has been
encountered (e.g. observation of data corruption). The policy
determines how the framework will respond to that kind of
error. Among the choices are skipping the processing of the
module that encountered the error, skipping the processing
of that event entirely. For the most severe errors, gracefully
shutting down the entire program, and thus avoiding improperly
truncated files, broken network connections, etc., is an option.

E. What The Experiment Provides

The artdaq toolkit, and the art framework that it relies upon,
provide the generic, i.e., experiment-neutral, parts from which
an experiment can construct an event-building and filtering
system. Individual experiments make use of the provided
infrastructure in several different ways.



At the highest level, individual experiments using artdaq
must still write their own experiment-specific DAQ applications:
artdaq is a toolkit, not a collection of complete applications.
The needs of experiments are sufficiently diverse that it is
unfeasible for us to deliver complete applications to the
experiments. Instead, our groups work with the experiments to
help them produce software matching their specific needs.

Experiments must, of course, define the format of their
own raw data objects. In order for the data products they
define to be consistent with artdaq, it is required that the
data of the individual product be contained in a contiguous
series of bytes; this is because the data of the Fragment is a
contiguous sequence of 64-bit unsigned integers (contained in
a std::vector). The sequence of integers is not interpreted
in any way by artdaq; neither packing nor unpacking of data is
done. It is straightforward (and strongly recommended) to write
utility classes to handle the technicalities of reading and writing
the data structure, and applying the data product overlay to the
Fragment. This localizes the low-level bit manipulations to
a limited number of classes, rather than having it be visible
in many places in the code that uses these data. As a result,
verification and modification of the code is simpler.

As part of their use of the art framework (both for offline
and online purposes), experiments are responsible for defining
their own data types to describe reconstruction results. These
data products must conform to the restrictions imposed by
the persistency system used by art. For data products that are
noted as non-persistable, these requirements are relaxed.

Also as part of their use of the art framework, experiments
are responsible for defining their own reconstruction and
filtering modules. In the terminology of art, reconstruction
includes all data transformation: unpacking or decompression
of data, translating from “electronics coordinates” to “physics
coordinates”, applying calibrations, as well as what is typically
thought of as reconstruction, e.g. track reconstruction. The
framework provides a few base classes from which experiment-
produced modules must inherit; this allows the modules to
be dynamically loaded and invoked by framework without
requiring recompilation of the framework.

IV. GUIDING USE CASES

A. The NOνA Prototype Data Driven Trigger

The NOνA [6] experiment at Fermilab will search for the
oscillation of muon neutrinos to electron neutrinos. NOνA
will have two detector components, a Near Detector sited at
Fermilab, and a Far Detector sited at Ash River, MN. The
ND will comprise more than 18 thousand readout channels,
and the FD 340–368 thousand channels. A prototype ND,
comprising up to 12 thousand instrumented channels, is being
built and is in partial operation. The NOνA design features a
free-running, dead-time free, continuous readout. This system
will collect data at 2 GB/s, and buffer up to 20 seconds worth of
data. The data must be searched to correlate observed detector
energy deposits with beam spills from the NuMI [7] beam
facility, identifying events that consist of those hits in a time
window of 5 ms. The NOνA event-building system predates
the development of artdaq.

NOνA is investigating the design and development of a Data
Driven Trigger (DDT). This gave us the opportunity to verify
that the filter portion of artdaq can readily be adopted into
an existing online software system, and to demonstrate to the
experimenters that algorithms developed in the context of the
art framework, already used by the NOνA offline processing,
could easily be deployed online.

In the prototype DDT, the data are read from the event-
building buffer at full rate, and sent to art, which is configured
to run analysis modules that examine the data to identify
event topologies of interest. The analysis result—an accept or
reject decision—is then fed back into the experiment’s global
triggering system to form a data-driven decision for a whole
event.

The first physics algorithm to be completed was a track
finding algorithm based on the Hough transform [8]. An art
module with a preliminary implementation of the algorithm
was developed and tested in the offline environment, and then
integrated in the online DDT environment. This module was
then used successfully in the live data stream from the portion
of the NOνA Near Detector that was complete at the time of the
testing. The implementation is amenable to many optimizations,
and NOνA scientists will continue to improve it. The successful
exercise of the preliminary implementation in the online DDT
environment has demonstrated that study and optimization of
the algorithm in the offline environment will yield software
that can be directly deployed in the online environment.

B. Fast Compression and High Data Rate at DarkSide-50

DarkSide-50 is a direct dark matter search experiment located
at the Laboratori Nazionali del Gran Sasso, in Italy [9], [10].
For DarkSide-50, we used artdaq to create a prototype event-
building and processing system that would require only one
multicore COTS computing node to keep up with their front-
end data rate. At the time we created the prototype, the plan for
this experiment was to utilize five front-end digitizer boards,
each containing eight 12-bit ADC channels for a total capacity
of 40 channels, of which 38 were to be used. Each board would
aggregate up to eight channels onto one fiber optic link that
would supply data to the processing node through a Peripheral
Component Interconnect Express (PCIe) bus. The digitizers
would operate at 250 MHz. Events would consist of one 300 µs
sampling interval across all channels, yielding 1.2 MB of data
per board, and would occur at a rate not to exceed 50 Hz. To
accommodate this rate, the computing system is required to
handle a continuous average data rate of 300 MB/s. Due to
practical considerations, such as cost of permanent storage,
the output stream is required to not exceed 30 MB/s. Fig. 2
shows the organization of this prototype. Because front-end
hardware was not yet available to us, we provided components
that emulate missing functions. To emulate the data link layer
through the PCIe bus, we use an 8x 40 Gb/s QDR InfiniBand
(IB) network interface controller connected to an 18-port
switch. For the event-processing system, we used a single node
containing 4xAMD6128 chips (32 total cores), with 64 GB
of RAM. Using actual digitizer test stand data, we created a
data generation software library capable of generating event
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Fig. 2. The major components of the prototype DarkSide-50 event-building system. Solid lines indicate inter-process communication, done mostly through
MPI. Dashed lines indicate communication between different threads in the same process.

fragments, each representing the data of a board with eight
channels. We used three more nodes, each identical to the
event-processing node, to emulate the data generation of the
five front-ends (for a total of 40 channels of data). On the single
processing node we ran five fragment-receiving processes, each
tied directly to one of the data generators through the IB
network. In order to fully utilize the available 32 cores on the
event-processing node, we configured artdaq with five event
processors This configuration yields five parallel full-event
streams for algorithms to operate on.

We used this system to evaluate the rate at which a single
node can ingest data from the digitizers and perform the event-
building task, the rate at which we can run a compression
algorithm on the data stream, and the compression ratio that
can be achieved.

We chose to use Huffman coding [11] in our first compres-
sion algorithm, partly due to its simplicity, speed, and ability to
achieve reasonable compression. We parallelized the algorithm
using OpenMP [12], using one thread for the compression of
the data from each board, yielding five-way parallelism for the
processing of a single event. With five available event streams,
each performing five-way parallelism, we are able to utilize
25 of the 32 cores available on the machine.

With this configuration, we are able to operate the system
at an average of 246 events/s, while achieving an average
compression ratio of 4.9:1. This is approximately 5 times
faster than the required 50 Hz rate.

C. Mu2e Multi-node Event-Building

We have begun studying the feasibility of developing a
full-rate DAQ (one which does little or no hardware filtering)
event-filtering system for the Mu2e experiment [13]. Providing

a software system that will perform event filtering at full
rate will currently require an aggregate throughput of about
30 GB/s from approximately 275 front-end detector sources.
The filtering software will need to reduce the input data
stream to about 30 MB/s. Assuming that digitized waveform
data can be made available on a PCIe bus within a COTS
computing node from the front-end hardware, the questions we
are exploring are: how many nodes will it take to (1) handle this
input data rate and (2) perform the event-filtering functions. We
have initial results for the first of these questions. Because of
the architectural similarity with DarkSide-50 and similar high
data-rate requirement, we have been able to utilize a system
of five nodes (of the same configuration described earlier) of
the IB-connected system for these tests.

The configuration of the event builders and data generators
is somewhat different than the DarkSide-50 configuration. Here
we use the IB network entirely for the event building and drive
it using our MPI-based components.

We simulate each of the five nodes being connected to the
experiment’s front-end hardware by having each node run a
data-generator process. Each data-generator process sends its
data directly to a single fragment-receiver process on the same
node. Each node also runs an event-builder process. Each
fragment receiver sends fragments to all event builders. This
means that each node effectively sees 1/5 of the detector on
readout and also 1/5 of the full events for processing and
analysis. If the system scaled perfectly, we would expect a
rate that is five times that of one machine. Partly because
of the many-to-one function that being performed for event
building, this is not possible. With this 5 × 5 configuration,
and without tuning the MPI implementation, we measured an
average aggregate throughput of 3.6 GB/s (or approximately
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Fig. 3. Aggregate bandwidth of the prototype DarkSide-50 DAQ system,
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730 MB/s per node).
This early result is encouraging. If additional scale-up tests

indicate that similar rates can be maintained, it shows that it
is feasible to construct a 30 GB/s data processing system at a
reasonable cost.

In order to measure the degree to which artdaq allows
experiments to have useful access to the computational power of
the multiple cores available on modern platforms, we performed
tests using the computing nodes purchased for the DarkSide-
50 DAQ. These consisted of four Intel-based machines, each
with 2xIntel Xeon E5-2620 chips (12 total cores per node),
and six AMD-based machines, each with 4xAMD6212 chips
(32 total cores per node), all connected on a QDR InfiniBand
network. We configured the system according to the design
of the DarkSide-50 DAQ, using the four Intel-based nodes to
send data (running fragment-receiver processes) and used the
AMD nodes to run the event-builder processes. We varied both
the number of nodes used for event building, and the number
of event-builder processes run on each node, and measured the
aggregate throughput of the system in each configuration. Our
measurements are shown in Fig. 3. The plateau bandwidth is
3.8 GB/s; this is reached using four nodes for event building, or
with just three nodes if four or five event-builder processes are
run per node. Using additional event-builder processes is not
seen to slow the data handling. Thus artdaq allows experiments
to take advantage of the additional cores on event-building
nodes either through process-level parallelism (which does not
require experiments to implement algorithms in a thread-safe
manner), or thread-level parallelism, for those experiments who
have the resources and expertise to attend to thread safety in
the implementation of their algorithms.

V. SUMMARY

The initial prototype event builders written using the
prototype artdaq have been able to achieve adequate (in
the case of DarkSide-50, much more than adequate) data
throughput in a very short time, with limited development
resources and with very modest demands placed upon the
experiments’ developer resources, using a modest amount of
COTS computing hardware.

Using tools commonly used in the HPC community, but
not typically used in DAQ systems (e.g. MPI, OpenMP, and
InfiniBand networking), we have demonstrated the feasibility of
building fully-configurable, distributed, multi-process programs,
without having to write any low-level code, and requiring a
very limited amount of experiment-specific code.

We have demonstrated portability between offline and online
software for testing and ease of debugging, and have established
an environment in which we can carry on with our R&D tasks.
We have already generated some enthusiasm in those in our
local community who have been surprised by the speed of
development and the resulting performance of the system.
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